A racionális számokat az egész számok hányadosaiként határozzuk meg. Az egész számokat a természetes számokból származtatjuk, hozzávéve a természetes számok sorozatához a negatív egész számok sorozatát is. Nem véletlenül használom a sorozat fogalmát a halmaz fogalma helyett. A természetes számokat ugyanis kizárólag sorozatként lehet definiálni, és kezelni. Ezen azt kell érteni, hogy a sorozatnak egyetlen egy rögzített első tagja van definiálva, továbbá definiálva van a rákövetkezés művelete, amely minden egyes sorozat taghoz egyetlen egy rákövetkező tagot definiál. Ezzel implicit definiáltuk a sorozat végtelenségét is, amelyet megszámlálhatóan végtelen számosságúnak nevezünk. Az elnevezést az indokolja, hogy a rákövetkezés művelete megszámlálási műveletnek is nevezhető. Ez a definíció a természetes számok topologikus leírása, amelyet persze ki kell egészíteni a természetes számok alapműveleteinek definícióival, és a számábrázolások definícióival, de ezzel most itt nem foglalkozunk. A természetes számok sorozata azt az alapsorozatot definiálja, N = (0,1,2,3,..) amelyhez ezután minden más sorozat definiálható egy tetszőleges hozzárendeléssel. Tehát bármely olyan matematikai objektum, amely maradéktalanul hozzárendelhető a természetes számok sorozatához, maga is sorozat, és minden sorozat legfeljebb megszámlálhatóan végtelen számosságú. Az egész számok sorozata megszámlálható, hiszen a pozitív, és a negatív egészek sorozatát felváltva hozzárendelhetjük a természetes számokhoz, Z = (0,1,-1,2,-2,3,-3,4,-4,...). A racionális számokat egy egész szám, és egy nem nulla természetes szám hányadosaként határozzuk meg, és szintén megszámlálhatóak. Az egész számok, és a nem nulla természetes számok Descartes szorzatát alkotó fél számsíkot az origó körüli csigavonal szerint végigjárhatjuk
Q = ( d(0,1),
d(1,1), d(0,2), d(-1,1),
d(2,1), d(1,2), d(0,3), d(-1,2), d(-2,1),
d(3,1), d(2,2), d(1,3), d(0,4), d(-1,3), d(-2,2), d(-3,1),
d(4,1), d(3,2), d(2,3), d(1,4), d(0,5), d(-1,4), d(-2,3), d(-3,2), d(-4,1), ...), ahol
d(a,b) = a/b, és a koordináták abszolút értékeinek összege monoton növekszik a sorozatban.
Akik már találkoztak tanulmányaik során N, Z, és Q definícióival, azok nyilván észrevették, hogy én nem használtam a szokásos halmazként való definiálást, sőt kínosan ügyelve készakarva elkerültem ezt, és a következőkben az is ki fog derülni, hogy ezt miért tettem.
A racionális számok nem tudják reprezentálni a számegyenes pontjait, például a négyzetgyök kettő, vagy az egységsugarú kör kerülete sem írható fel két egész szám hányadosaként. Ezért van szükség a valós számok bevezetésére, amelyek a számegyenes minden pontját folytonosan lefedik. A valós számokat a racionális számokból álló sorozatok határértékeiként definiáljuk, tehát bármely valós szám elő áll egy racionális számsorozat határértékeként, vagy másként fogalmazva a racionális sorozattal tetszőlegesen kicsiny pozitív korlátnál jobban megközelíthető.
A következőkben megkonstruáljuk a [0,1] valós intervallumot, mint halmazt. Vegyük ezen intervallumba eső n jegyű tizedes törtek halmazát, Q10[0,1](n), és képezzünk sorozatot belőlük, Q10[0,1] = (Q10[0,1](1), Q10[0,1](2), Q10[0,1](3),...). A sorozat tagjai minden [0,1] intervallumbeli véges tizedes törtet tartalmaznak, tehát minden olyan racionális számot, amely véges tizedestörttel leírható. De nem tartalmazzák az irracionális számokat, és a csupa 9-es jeggyel záródó sorozatok kivételével nem tartalmazzák azon racionális számokat sem, amelyek csak végtelen tizedes törttel írhatók le (pl. 1/3). Most vegyük ennek a halmazsorozatnak a határértékét. A halmazsorozat határértéke szintén halmaz, és az tartalmazni fog minden racionális számot, és minden racionális számsorozat határértékét is a [0,1] intervallumban, vagyis a határértékhalmaz nem más, mint a [0,1] valós intervallum. Tehát limes(n=1..∞) Q10[0,1](n) = R[0,1]
Ezek után tegyük fel a kérdést, mit is értsünk az összes racionális számok halmazán. A kérdést szűkítsük le a [0,1] intervallumra. A választ sajnálatos módon ugyanazon halmazsorozat határértéke adja, amellyel fentebb meghatároztuk a valós intervallumot. Vagyis ahhoz, hogy az összes [0,1] intervallumbeli racionális számot befoglaljuk egy halmazba, kénytelenek vagyunk az említett sorozat határértékét venni, ellenkező esetben nem állíthatjuk, hogy minden racionális szám belekerült egy halmazba.
Nincs más matematikai eljárás, amellyel egy sorozat minden tagját előállíthatnánk, mint a határérték képzés. Aki ennek ellenkezőjét állítja, az csupán saját zavaros elképzeléseinek foglya, de semmilyen érvet, vagy matematikai definíciót nem tud bemutatni elképzeléseinek igazolására. Nyilvánvaló pedig, hogy akik például a végtelen tizedes törteken való Cantor-féle átlós bejárást módszerét alkalmasnak találják a hatványhalmaz nagyobb számosságának is az igazolására, azok éppen azt feltételezik, hogy a határértékképzést is magába foglaló végtelen tizedes tört definíció analóg a megszámlálható sorozat minden tagját tartalmazó végtelen halmazzal, még ha más esetekben ezt próbálják is letagadni. De a matematika nem tűri az efféle szabadosságot. Ezen zavaros elképzeléseknek nagyon könnyen megfogható forrása van, éspedig az a hibás elképzelés, hogy egy sorozat halmazként is kezelhető. Nem igaz. De ezzel a hamis állítással sulykolják belénk a matematika alapjait már 120 éve. Ezen hibás elképzelések okairól, következményeiről, és kijavításáról a korábbi cikkeimben lehet olvasni. A még tanuló fiatalság figyelmét azonban felhívnám arra, hogyha a cikkbeli állításomat vizsgán adná elő, jó eséllyel kivágják a vizsgáról, mivel a matematikusok manapság inkább hisznek, mintsem gondolkodnának.
Így azután a valós számokon értelmezett Dirichlet függvény, amely definíció szerint racionális helyeken nulla, irracionális helyeken egy, valójában mindenütt nulla, hiszen az összes racionális szám csak határértékképzéssel kapható meg, ami megegyezik a valós számok halmazával.
Budapest, 2012. augusztus 23. Takács Ferenc bp.